Alexander描述
参考 Langmuir 2003, 19, 4027-4033
胶体粒子为球形,半径为\(a\),带电为\(-Ze\),cell半径为\(R\)。
在一个cell里,局域无量纲电势满足PB方程:
\begin{equation} \nabla^2\phi(r)=\kappa_{res}^2\sinh\phi(r) \label{eq:PB} \end{equation} 边界条件:\[\vec{n} \cdot \nabla \phi(r)|\_{r=a}=\frac{Z \lambda_B}{a^2}\]\[\vec{n}\cdot \nabla\phi(r)|_{r=R}=0\]
把方程(\ref{eq:PB})线性化,即在\(\phi(R)=\phi_R\)处将其展开。
方程(\ref{eq:PB})左边
\[\nabla^2\phi(r)=\nabla^2(\phi(r)-\phi_R)=\nabla^2\widetilde{\phi}(r)\] 方程(\ref{eq:PB})右边 \begin{equation} \begin{split} \kappa_{res}^2\sinh\phi(r)&=\kappa_{res}^2[\sinh\phi_R+\cosh\phi_R(\phi(r)-\phi_R)]\ &=\kappa_{res}^2\cosh\phi_R[\tanh\phi_R+\widetilde{\phi}(r)]\ &=\kappa_{res}^2\cosh\phi_R[\gamma_0+\widetilde{\phi}(r)]\ &=\kappa_{PB}^2[\gamma_0+\widetilde{\phi}(r)] \end{split} \end{equation} 将以上两式合在一起,得线性化的PB方程: \begin{equation} \nabla^2\widetilde{\phi}(r)=\frac{1}{r^2}\frac{d}{dr}\left [r^2\frac{d}{dr}\widetilde{\phi}(r)\right ]=\kappa_{PB}^2[\gamma_0+\widetilde{\phi}(r)] \label{eq:LPB} \end{equation} 边界条件:\[\widetilde{\phi}(r)|\_{r=R}=0\]\[\vec{n}\cdot\nabla\widetilde{\phi}(r)|\_{r=R}=0\] 方程\ref{eq:LPB}的解为\[\widetilde{\phi}(r)=\gamma_0\left [-1+\frac{\kappa_{PB}+1}{2\kappa\_{PB}}e^{-\kappa_{PB}R}\frac{e^{\kappa_{PB}r}}{r}+\frac{\kappa_{PB}-1}{2\kappa\_{PB}}e^{\kappa_{PB}R}\frac{e^{-\kappa_{PB}r}}{r}\right ]\]根据下式计算等效电量(Effective charge, Renormalized charge):
\[\frac{d\widetilde{\phi}(r)}{dr}\Bigg|\_{r=a}=\frac{Z\_{eff}\lambda_B}{a^2}\]
得 \begin{equation} Z_{eff}=\frac{\gamma_0}{\lambda_B \kappa_{PB}}{(\kappa_{PB}^2aR-1)\sinh[\kappa_{PB}(R-a)]+\kappa_{PB}(R-a)\cosh[\kappa_{PB}(R-a)]} \label{eq:Zeff} \end{equation}计算\(Z_{eff}\)步骤:
- 解方程(\ref{eq:PB}),得\(\phi_R\)
- 计算\(\kappa_{PB}^2=\kappa_{res}^2\cosh\phi_R\)
- 带入方程(\ref{eq:Zeff}),计算\(Z_{eff}\)
Renormalized jellium model
参考:
- PHYSICAL REVIEW E 69, 031403 (2004)
- THE JOURNAL OF CHEMICAL PHYSICS 126, 014702 (2007)
- THE JOURNAL OF CHEMICAL PHYSICS 133, 234105 (2010)
假设胶体离子均匀分布,作为小离子分布的背景。Poisson-Boltzmann方程:
\begin{equation} \nabla^2\phi(r)=4\pi\lambda_BZ_{back}\rho+\kappa_{res}^2\sinh\phi(r) \label{eq:RJPB} \end{equation} 其中,\(\rho\)为胶体平均密度,\[\kappa_{res}^2=8\pi\lambda_B \sinh\phi(\infty) \]边界条件:
\[\vec{n}\cdot \nabla \phi(r)|\_{r=a}=\frac{Z\lambda_B}{a^2}\]
\[\vec{n}\cdot \nabla \phi(r)|_{r=\infty}=0\]
并有
\[ 4\pi\lambda_B Z_{back}\rho+\kappa_{res}^2\sinh\phi(\infty)=0 \] 等效电荷\(Z_{eff}=Z_{back}\)需要用迭代法求出\(Z_{eff}\),见THE JOURNAL OF CHEMICAL PHYSICS 126, 014702 (2007)。